
Conformal Field Theory and Gravity
Solutions to Problem Set 2 Fall 2024

1. Mechanics of spherically symmetric black holes

(a) Neglecting, the S2 factor, the geometry near the horizon is

ds2 = f ′(rh)(r − rh)dτ
2 +

dr2

f ′(rh)(r − rh)
(1)

Using a transformation r − rh = ρ2, we get

ds2 =
4

f ′(rh)

((f ′(rh))
2

4
ρ2dτ 2 + dρ2

)
(2)

This is regular at ρ = 0 if the manifold is locally isomorphic to R2, hence we require
τ ∼ τ + 4π

|f ′(rh)|
.

(b) The relation between surface gravity and temperature is fixed by black hole thermo-
dynamics κ = 2πTh, and the interpretation of the area of a black hole as its entropy
S = A

4
. One matches the first laws

κ

8π
dA = dM + ... (3)

TdS = dE + ... (4)

Let us find now the surface gravity with a geometric approach. In EF coordinates
we get

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2 (5)
If the metric is asymptotically flat, then the vector ξ = ∂u satisfies our requirements:
ξ2 = −f(r) → −1 as r → ∞ and it is a null Killing vector at r = rh. Therefore, we
get

∇µ(ξ
2)|rh = −f ′(rh)δ

r
µ (6)

Using ξµ|rh = gµv|rh = δrµ, we obtain the surface gravity

κ =
|f ′(rh)|

2
(7)

(c) The black hole has an horizon at r± = M ±
√

M2 −Q2, with rh ≡ r+ being the
outer one.
If we write f(r) = (r−r−)(r−r+)

r2
, we easily find the temperature is

T =
r+ − r−
4πr2+

=

√
M2 −Q2

2π(2M2 −Q2 + 2M
√
M2 −Q2)

(8)

For Schwarzschild, we recover T = 1
8πM

.
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(d) The area of the black hole is simply

A = 4πr2+ = 4π(2M2 −Q2 + 2M
√

M2 −Q2) (9)

For Schwarzschild, we recover A = 16πM2.

(e) The electric potential is given by:

Φ = −T

4

∂A

∂Q
(10)

(f) Before the collision, the total area of the two black holes is Ai = 16π(M2
1 + M2

2 ).
After the collision, it is Af = 16πM2

3 .
The second law implies Af ≥ Ai, hence M3 ≥ Mcr =

√
M2

1 +M2
2 .

2. Raychaudhuri equation

(a) Since we assume ω̂µν = 0 and since σ̂µν is spacelike, we have that

dθ

dλ
= −1

2
θ2 − σ̂µν σ̂

µν + ω̂µνω̂
µν −Rµνk

µkν ≤ −1

2
θ2 −Rµνk

µkν (11)

Using the Einstein equation,

Rµν −
1

2
gµνR = 8πGTµν (12)

One can contract with gµν to obtain

R = −8πGT (13)

where T ≡ Tµνg
µν . Plugging this back into the original Einstein’s equation, we get

Rµν = 8πG(Tµν −
1

2
Tgµν) (14)

Now contracting with kµkν using that kµkµ = 0 and the null energy condition, we
obtain

Rµνk
µkν = 8πGTµνk

µkν ≥ 0 (15)
Thus,

dθ

dλ
≤ −1

2
θ2 (16)

Rearranging,

d

(
1

θ

)
≥ 1

2
dλ (17)

Integrating between (0, θ0) and (λ0, θf ), we get

1

θf
− 1

θ0
≥ λ0

2
(18)

taking θf → ∞ and θ0 negative, we obtain the suggested bound,

λ0 ≤
2

|θ0|
(19)
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(b) As the hint suggests, we need to verify ξα∇αξ
µ = 0. Since ξµ only has a V compo-

nent, this reduces to
0 = ξV∇V ξ

µ = ξV ∂V ξ
µ + Γµ

V V ξ
V (20)

Using
Γλ
µν =

1

2
gλσ(∇µgνσ +∇νgµσ −∇σgµν) , (21)

we get that that the only non-trivial component of Γµ
V V is

ΓV
V V = g−1

UV ∂V (gUV ) (22)

where gUV is the component of the metric

gUV = −16M3e−r/(2M)

r
(23)

To compute ∂V ξ
V , we need ∂V r. This is computed by deriving the implicit relation

r = r(U, V ) on both sides with respect to V . We obtain

∂V r = −U
4M2

r
e−r/(2M) (24)

Plugging everything and computing the derivatives, we obtain the desired result.

(c) Using the hint,

θ = r−1er/(2M)∂V (re
−r/(2M)︸ ︷︷ ︸√

−g

rer/(2M)) = 2er/(2M)∂V r (25)

Using the result obtained previously for ∂V r, we get

θ = −8M2

r
U (26)

(d) Using the chain rule,
dθ

dλ
=

dV

dλ

dθ

dV
(27)

and using dV /dλ = ξV = rer/(2M) by definition of ξµ, taking the derivative dθ/dV
using the expression of θ and the formula for ∂V r, we obtain

dθ

dλ
= −32M4

r3
Ue−r/(2M)︸ ︷︷ ︸

dθ/dV

rer/(2M) = −1

2
θ2 (28)

(e) Follow the discussion in point (a) by replacing ≤, ≥ by =. Our situation thus
corresponds to the upper bound λ0 = 2/|θ0|.
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